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A Preview of Results  

(a) Data (b) Model (c) Perception (d) Preferences 

Figure 1: Visualizations of active inference model. 
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A generative model of 
observations T(ot|st). 

A belief distribution 
about the hidden state 
bt(s) = P(st = s|ht) 

A representation of state 
dynamics, i.e.  a  
transition to a new state 
st+1 takes place with 
probability P(st+1|st, at) 
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A POMDP Model  

After t > 0 time periods, the observable history of observations and 
actions is denoted by 

ht := {ot, ..., o0, at 1, ..., a0} 2 Ht 
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A POMDP Model  

After t > 0 time periods, the observable history of observations and 
actions is denoted by 

ht := {ot, ..., o0, at 1, ..., a0} 2 Ht 

Denoting control policies (possibly random) by p(·|ht), the POMDP 
model is the solution to: 

h i 
max E Â g t[r(st, at) c(p(·|ht))] 

p 
t 0 

where r(st, at) is the reward and c(p(·|ht)) information processing 
cost. 
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A Bayesian Agent 

A Bayesian agent forms beliefs bt about the state of the environment: 

bt(s) = P(st = s|ht) 
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A Bayesian Agent 

A Bayesian agent forms beliefs bt about the state of the environment: 

bt(s) = P(st = s|ht) 

When implementing action at under beliefs bt, the agent expects: 
a reward  

Â 
s 

r(bt, at) := r(s, at)bt(s) 

observation ot+1 with probability: 

ÂÂs(ot+1|bt, at) := 1|st+1)P(st+1|st, at)bt(T(ot+ st) 
st+1 st 
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A Bayesian Agent 

With Markovian dynamics and additive reward the model of optimal 
behavior has recursive structure: 

n 
V

⇤(b) =  max 
p(·|b) 

ÂÂ r(s, a)p(a|b)b(s) c(p(·|b)) 
s a o 

+ g Â 
0o 

Â 
a 

s(o0|b, a)p(a|b)V⇤(b0) 

where b0 is the resulting belief when observation o0 is recorded after 
implementing action a. 

Alfredo Garcia Texas A&M University 8 / 28  



i Ra njoint work w th n Wei a 

A Bayesian Agent 

With the information processing cost as Kullback-Leibler divergence 
between the control policy and a default policy p0, i.e.  

c(p(·|b)) = DKL(p(·|b)||p 0(·|b)) 
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A Bayesian Agent 

With the information processing cost as Kullback-Leibler divergence 
between the control policy and a default policy p0, i.e.  

c(p(·|b)) = DKL(p(·|b)||p 0(·|b)) 

The model is of the form: 

p0(a|b) exp Q
⇤(b, a) 

p ⇤(a|b) =  (1) 
Âa02A p0(a0|b) exp Q⇤(b, a0) 

where 

Q
⇤(b, a) := r(b, a) +  g Â s(o0|b, a)V⇤(b0) (2) 

o0 
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Learning a Model of Perception and Action 

Based upon data D (i.e sequences of observations and implemented 
actions say t) estimate the primitives of the perception & control 
model: 
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Perception The agent’s internal representation: Pq1 
(s0|s, a) and 
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Learning a Model of Perception and Action 

Based upon data D (i.e sequences of observations and implemented 
actions say t) estimate the primitives of the perception & control 
model: 

Perception The agent’s internal representation: Pq1 
(s0|s, a) and 

p
Tq1 

(o0|s0) parametrized by q1 2 R1 . 

Preferences A reward function rq2 (b, a) which is parametrized by q2 
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Learning a Model of Perception and Action 

The log-likelihood of dataset D can be written as: 

log P(D|q) = log ’ P(t|q) 
t2D 

h T ⇣ ⌘i 
Â ⇤log p (at|bq1,t)P ot+1|ht [ {at} |D| q = Et⇠D 
t=0 

h T i 
Â ⇤log p (at|bq1,t) |D| + constant q = Et⇠D 
t=0 
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Learning a Model of Perception and Action 

Assumption 1: P(q) = P(q1)P(q2), where:  

⇣ T ⌘ 
P(q1) µ exp lEt⇠D 

⇥ 
’ sq1 

(ot+1|bq1,t, at) 
⇤ 
|D| 

t=0 

for some l > 0. 
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Learning a Model of Perception and Action 

Assuming a uniform prior P(q2) on a compact subset Q2 ⇢ R2 
p
, the  

log of the posterior distribution can be written as: 

log P(q|D) = log P(D|q) + log P(q1) + constant 
T

Â 
h iT

Â⇤(at|bq1,t) + lq (ot+1|bq1,t, at) |D| log log sq1 
= ED p 

t=0 t=0 

+ constant 
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Learning a Model of Perception and Action 

The estimation problem as the following bi-level optimization problem: 

h T T i 
Â 

0t= 
Â ⇤(at|bq1,t) +  lq (ot+1|bq1,t, at)log log sq1max ED p

(q1,q2) t=0 h i 
Â 
h H 

[rq (bh, ah) log p(·|bh)]s.t. ⇤ pq = arg max 
p2PH 

E 
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Active Inference and Free Energy 

Active inference is a novel 
framework for cognition and 
behavior according to which the 
agent jointly perceives and acts 
upon the world so as to 
maximize the match between 
perceived vs preferred states of 
the world. 
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A principle of free energy 
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Active Inference and Free Energy 

A principle of free energy 
minimization: 

(backward) free energy is 
minimized when the agent’s 
belief distribution bt corresponds 
to the Bayes updated belief 
distribution on the state st. 

(forward) surprise is measured 
with respect to a preferred 
distribution P̃(st+1) over states 
of the environment. 
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Active Inference and Free Energy 

The immediate “surprise” associated with action at when current 
beliefs are bt is quantified by the expected free energy defined as: 

⇥ �⇤ ⇥ ⇤ 
EFE(bt, at) =  E DKL bt+1||P̃ + E H(T(·|st+1)) 

where 
bt+1(s) =  P(st+1 = s|ht [ {at, ot+1}) 

and H(T(·|st+1)) is the entropy of the resulting generative model of 
observations, i.e.: 

⇣ ⌘ 
H(T(·|st+1)) := Â T(o0|st+1) log T(o0|st+1) . 

o0 
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Application to Car Following Task, Ran et al. (2023) 

We use the active inference specification (reward equal to negative 
free energy). 

We use the INTERACTION dataset: a set of time-indexed trajectories 
of the positions, velocities, and headings of each vehicle in the scene 
in the map’s coordinate system at a sampling frequency of 10 Hz. 
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Application to Car Following Task 

Figure 2: Top down view of the roadway in Dataset 
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Application to Car Following Task 

Figure 3: O✏ine evaluation MAE-IQM. Each point corresponds to a random seed 
used to initialize model training and its color corresponds to the testing condition 
of either same-lane or new-lane. 
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Application to Car Following Task 

Figure 4: Online evaluation ADE-IQM. Each point corresponds to a random seed 
used to initialize model training and its color corresponds to the testing condition 
of either same-lane or new-lane. 
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Application to Car Following Task 

Figure 5: Visualizations of a same-lane o✏ine evaluation trajectory 
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Application to Car Following Task 

Figure 6: Visualizations of a same-lane online evaluation trajectory where the 
AIDA generated a rear-end collision with the lead vehicle. 
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Conclusions 

We proposed a novel model of driver behavior using active inference 
(AIDA). 

Using car following data, we showed that the AIDA significantly 
outperformed the rule-based IDM on all metrics and performed 
comparably with the data-driven neural network benchmarks. 

We showed that the structure of the AIDA provides superior 
interpretability of its input-output mechanics than the neural network 
models. 

Future work should focus on training with data from more diverse 
driving environments and examining model extensions that can 
capture heterogeneity across drivers 
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